Current Classes

<table>
<thead>
<tr>
<th>Period</th>
<th>Class</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1A</td>
<td>Math</td>
</tr>
<tr>
<td>1</td>
<td>1B</td>
<td>Math</td>
</tr>
<tr>
<td>2</td>
<td>2A</td>
<td>Math</td>
</tr>
<tr>
<td>2</td>
<td>2B</td>
<td>Math</td>
</tr>
<tr>
<td>3</td>
<td>3A</td>
<td>AP Calc</td>
</tr>
<tr>
<td>4</td>
<td>4B</td>
<td>AP Calc</td>
</tr>
</tbody>
</table>
12) a) Response Variable: debt per capita
 b) Correlation coefficient \(r = \sqrt{0.988} \)
 \(r = 0.994 \)
 Meaning of \(r \): There is a strong, positive linear association between debt per capita and debt year.
 c) Slope = \(\frac{1128}{1 \text{ year}} \)
 Meaning: For every year, the debt per capita is predicted to increase by $1128 on average.
 d) \(R^2 = 98.8\% \), of the variability in debt per capita is explained by the variability in debt year.
 e) No, the residual plot shows a pattern.
13\(a\) \[\hat{\text{Score}} = 56 + 2.4 (\text{Hours}) \]
\[b_1 = (1.8) \left(\frac{7.5}{2.5} \right) = 2.4 \]
\[b_0 = 80 - 2.4 (10) = 56 \]

\(b\) \[X = 15 \text{ hrs}, \]
\[\hat{\text{Score}} = 56 + 2.4 (15) = 92 \text{ pts} \]

\[r = 0.8 \]
\[\bar{\text{hrs}} = 10 \text{ hrs} \]
\[S_{\text{hrs}} = 2.5 \text{ hrs} \]
\[\hat{y} \]
\[\bar{\text{Score}} = 80 \text{ pts} \]
\[S_{\text{Score}} = 7.5 \text{ pts} \]
14) Answer: 56th percentile

Males:

\[Z_{60^{th}} = \text{invNorm}(0.6, 0, 1) \]

\[Z_{60^{th}} = 0.25 \]

\[(Z_y = r \cdot Z_x) \]

\[r = 0.65 \]

\[Z_{w+} = 0.16 \]

\[P(Z < 0.16) = \text{normalcdf}(0.0, 1.16, 0, 1) \]

\[= 0.56 \]

\[\therefore 56^{th} \text{ percentile} \]
15) (a) \[\hat{\log(Mass)} = 2.00143 - .000055(T) \]

(b) \[\hat{\log(Mass)} = 2.00143 - .000055(7500) \]
\[\log_{10}(Mass) = 1.58893 \]
\[\text{Mass} = 10^{1.58893} \]
\[\text{Mass} = 38.8 \text{ g. remaining} \]

(c) No, you need another model to predict time.
FR Ch 3 x 4 Test:

1. Model \rightarrow given
 (eq)
 resid. plot \rightarrow given

 appropriateness
 accuracy
 slope int.
 \(R^2 \) interp.
 graph reading

2. Like #14 on review

3. Like #15 \rightarrow linearly data